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Quantisation in indefinite metric 

M Mintchevt 
Scuola Normale Superiore, Pisa, Italy 

Received 26 April 1979 

Abstract. The general properties of the indefinite metric Fock quantisation are studied. 
Some applications of the abstract construction and examples (including the four-dimen- 
sional pure gauge model) are discussed. 

1. Introduction 

The recent interest in gauge quantum field theories has raised some fundamental 
questions about the structural properties of those theories. In particular it has been 
proved (Strocchi 1977) that the use of an indefinite metric is an unavoidable feature if 
one wants to preserve locality and relativistic covariance. The general scheme of 
quantisation in the Fock space (given originally by Fock (1932) and analysed and 
further developed by Cook (1953) and Segal (1956,1959, 1961)) requires therefore a 
generalisation to an indefinite metric. 

The main purpose of this paper is to give a general construction of the Fock 
quantisation with respect to indefinite inner products of a certain type (see 8 1) defined 
on a Hilbert space 2. The obtained field operators are in general not essentially 
self-adjoint as in the positive metric case, but only symmetric with respect to the 
corresponding inner products. Therefore the Weyl form of the commutation relations 
is realised by operators which are unitary with respect to some inner product, but in 
general not unitary and not even bounded. 

Applying the above construction, one can define in a precise way the Fock 
representations of free fields (in general, not only of Wightman type) defined by 
arbitrary two-point functions (not necessarily positive definite), which are only required 
to be translation-invariant, Lorentz-covariant and obey the spectral condition. The 
notion of these representations is necessary if one wants to use the corresponding fields 
in order to build Lagrangian models and to treat them by perturbation theory. 

Some of the above fields have an interesting feature-they violate the cluster 
decomposition property (for the definition see, for example, Bogolubov et a1 (1975, 
p 272)) and as a consequence produce confining potentials. To be concrete let us 
consider the following example. It is well-known that in the three-dimensional 
Euclidean space E 3 ,  the Coulomb and Yukawa potentials are fundamental solutions of 
the operators A and A - m 2  ( m  >0) respectively, i.e. 

t On leave of absence from the Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of 
Sciences. 
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(A-"2) -=-47~5(~)  

1 2 3  1 2 1 / 2 -  where x = (x , x , x ) E  E 3 ,  r = - 1x1 and A = C . t l  a 2 / a x ' 2 .  The cor- 
responding free fields in the four-dimensional Minkowski space M 4  (with metric tensor 
g,,, (F ,  v = 0 ,  . . . , 3) and signature (+ - - -)) are the electromagnetic potential A, and 
the scalar field p with mass m, which obey the equations 

(x ) ] 

OA,=O (O+m2)p  = o  (1.3) 

where x = (xo, x)  E M 4  and 0 = g,,(a/ax,)(d/dx,) (the summation convention is used). 
Likewise 

A2r = -87~S(x) (1.4) 

0 2 4  = 0. (1.5) 

and analogously to the above the corresponding relativistic field satisfies 

In this sense the field 4 produces a linear potential and therefore a constant force, i.e. 
the expected type of interaction between quarks. Besides the trivial constant solution 
and the massless scalar field, there are two other relativistic fields which obey the last 
equation. These are the dipole ghost field and the field with two-point Wightman 
function proportional to x 2  = gwVxwx ", which we will call in the following the harmonic 
field. As we mentioned, the general scheme which will be worked out allows an explicit 
and rigorous treatment of such types of fields. For models containing as building blocks 
the dipole and harmonic fields and having a non-trivial S matrix we refer the reader to 
d'Emilio and Mintchev (1979). 

The paper is organised in the following way. In the first section we recall some 
definitions and results from the theory of indefinite metric spaces (see Bognar (1974) 
and references therein). In the second section we formulate the quantisation pro- 
cedure. Section 3 contains the main theorems concerning the properties of the obtained 
quantised fields. As an illustration of the abstract construction, in 9 4 some examples 
are discussed. The last section contains applications of the above examples. We 
consider the general solution of the four-dimensional pure gauge model. Two parti- 
cular solutions of this model are studied by Kleiber (1965) and Zwanziger (1978). 
Unfortunately they do not exhibit a characteristic feature of the general solution, 
namely the failure of the cluster decomposition property, which is deeply connected 
with a possible confining mechanism. For this reason, in our opinion the general 
solution mimics an expected property of non-Abelian gauge theories. 

We adopt the following notations. By W1 and C' we denote the real line and the 
complex plane respectively, W" and @" are the corresponding Cartesian products and 
sP(W")  is the space of complex Schwartz test functions on W". The symbols 0 and 0 
stand for the tensor product and the direct sum. By 9~ and %A we denote respectively 
the domain and the range of the operator A. We shall deal with linear operators defined 
on linear subspaces (in general not closed) of a Hilbert space 2. 

2. Some definitions and preliminary results 

Let 2 be a separable complex Hilbert space with topology 7 generated by the scalar 
product ( * , . ). An inner product on 22' is a complex-valued function ( . , * ) defined for 
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all pairs cp, (I, E R, such that the conditions 

(cpt a$ + P x )  = a (40, (I,) + P(cp, x )  ( 2 . 1 ~ )  

(2 . lb)  

are fulfilled for each a, p E @' and cp, (I,, ,y E %, where the bar means complex con- 
jugation. The inner product ( * , . ) is called non-degenerate iff (cp ,  (I,) = 0 for all (I, E % 
implies cp = 0. We denote by $a(%?) the set of all non-degenerate inner products which 
are jointly T- continuous, i.e. Vcp, (I, E X 

Kcp, CllcpII ll(I,Il (2.2) 

where c is some real positive constant and / I  1 1  is the norm corresponding to the scalar 
product ( , ). Let i(R) c $(%) be the subset characterised by the condition c s 1 in 
(2.2). It is easy to see that i(%) is a convex subset of $a(%). The following proposition 
and corollary characterise completely the sets 9(R) and i(%). 

Proposition 1. The inner product ( , ) belongs to $(X) iff there exists a linear 
invertible bounded self-adjoint operator 7, such that for all pairs cp, (I, E X 

(a (I,) = (Vcp, (I,). (2.3) 

The operator 7 corresponding to ( . , ) E 9 ( X )  is unique?. 
The proof follows immediately from the theorem on the representation of jointly 

continuous non-degenerate sesquilinear form over a Hilbert space (see Akhiezer and 
Glasman 1966, p42). We stress that in general 7-l is unbounded, but has dens6 domain 
Bq-l = and is self-adjoint (Rudin 1973, p334). 

Corollary. ( . , . ) E  i(%) iff the corresponding metric operator 7 is a contraction on %, 
i.e. 1/711 s 1. 

Let us fix ( , 5 ) E  $ ( % e ) .  The operator A with dense domain &BA(gA = 2) is called 
( . , ) -symmetric iff Vcp, $ E 9 A  

(A% (I,) = (cp,A$). (2.4) 

Proposition 2. Every ( , * ) -symmetric operator is closable. 

Proof. Let A be a ( * , * )-symmetric operator and let the sequence {cp,} c GBA have the 
properties 

s-lim cpn = 0 s-lim Acp, = (I, 
n+m n '00 

(by s-lim we denote the strong limit in R). In order to prove the statement of the 
proposition we have to show that (I, = 0. Indeed, for every x E BA one has 

Now, using the fact that SA = % and that the inner product is non-degenerate, we 
conclude that CL = 0. 

t In the mathematical literature 7 is called the Gram operator of ( .  , ) with respect to ( , ). Here we shall 
follow the physical terminology and shall call TJ the metric operator. 
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Let A be a densely defined operator on 9 A ( Z A  = 2) and let 

 AS={$ E 213X E 2: (4, AV)=(X, 9 ) v V  E 9~). (2.5) 

The vector x from (1.5) is uniquely determined by 4, because ( . , ) is non-degenerate 
and gA = 2. Therefore one can define the operator A@ with domain 9 A @  by 

A@$ = x .  (2.6) 
The operator A@ is called the ( , .)-adjoint off A .  In analogy with the positive metric 
case, the densely defined operator A is called ( , * )-self-adjoint if A = A@. 

The operator U with dense domain BU and range %!u(gu =zu = X) is called 
( , )-unitary iff V9,  + E gU 

(2.7) 

Proposition 3. Every ( *  , )-unitary operator is a closable linear operator. It has an 
inverse, which is also ( - , * )-unitary. For the proof see Bracci et a1 (1975). 

(UP, U*> = (9, *). 

3. Quantisation 

In this section a general construction for quantisation in indefinite metric is given. We 
start with a complex separable Hilbert space {2('), ( 9 , + )(t)}, called the one-particle 
space. As usual the Fock space 9(2(") over 2''' is defined by 

where %(') = @' and X ( n )  (for n > 0) is the tensor product 
( n  > 0 )  we denote the total subset? of decomposable vectors 

2;'. By V(" )  c % ( n )  

V'n'={(p10 . .  .09~I9i~2'*',i=l,...,n>. (3.2) 

Let ( , be an arbitrary but fixed element of i (X" ) )  with metric operator 7). We 
define r(7) to be the operator on 9(XC1)) which equals O;=l 77 when restricted to 2'"' 
for n > 0, and which equals the identity on %'('). 

Proposition 4 .  The inner product defined by 

(cp, *) = (U77)90, $1, Q, $ E 9(2(')), 
where ( , ) is the scalar product in g ( X ( ' ) ) ,  belongs to i ( 9 ( X ( ' ) ) ) .  

(3.3) 

Proof. Because of the corollary of proposition 1 , ~  is a self-adjoint contraction on 2('), 
which implies that r(q) is well defined and is a self-adjoint contraction on 9(2ec1)). 

In order to prove that the inner product (3.3) is non-degenerate, it is sufficient to 
verify that this is true on 2'"' for arbitrary but fixed n. On 

= {cpl O. . .E qrt/cp, E CR,, i = I , .  . . , n }  

we define the operator @;=I 77-l by 

6 77-1:910...0(p"Hrl-'9t0.. .077-1qn 
k = l  

t V c Xis called total iff the set of finite linear combinations of elements of V, denoted by L( V), is dense in 2. 



Quantisation in indefinite metric 1845 

and extend it by linearity on L(92:)), which is dense in X'"', because 8,, is dense in X' l )  
(see proposition 1 ) t .  It is easily seen that @;=l q--l is the inverse of @;=I 77 on L(9??)) 
and is symmetric and therefore closable. 

Let ( c p ,  X )  = OVX E X'"), where cp E %("I. This implies @;=I vcp = 0. There exists a 
sequence {cp,} c L ( 8  t)), such that 

s-lim cpm = cp. 

Consider the sequence {Gm 
obtain 

m +cc 

vcpm)~L(9?t)) .  Using that @;=I 7 is bounded we 

and, on the other hand, 

(3.4b) 

From equations (3.4) and the fact that @;=, 7-l is closable we obtain cp = 0, which 
completes the proof of the statement. 

Proposition 5. The operators b*(cp) satisfy the conditions: 

(a) llb*(cp)lc/ll G IIcpll~1)ll~ll  V* E V(") 
where 11 3 1 1 ( 1 )  and / I  1 1  are the norms in 2"'' and 9 ( X ( ' ) )  respectively; 

(b) b+(cp) is the ( , )-adjoint of b-(cp). 

( 3 . 5 ~ )  

(3.5b)  

(3.6) 

Proof. (a) Using that ( , * ) ( I ) €  i ( X ( ' ) )  we obtain for all $ = $1 0. . .0 Gn E V ( " )  

l l ~ - ( c p ) ~ l l z  = I(% ~ l ) ( l ) l ~ l l ~ 2  0. * .@ $nil2 G l l c p l l ; l ~ l l ~ l l l ~ l ~ l l ~ ~  0. * .@ $AI2 = llcpll;l~ll$l12. 
The inequality for b+(cp) can be proved analogously. 

(b) This condition follows from the fact that V$ E V(n), V x  E V ( " + ' )  one has 

(b+(cp)$,~)=(b+(cp)$lO. * . @ $ n , ~ 1 @ *  * O ~ n + l )  

= (CP, XI)(I)($I ,  XZ)(I) * ($n, X n + l ) ( l )  

t The operator O;=, q-' cannot be extended in general on %'c")7 because q-' is in general unbounded. 



1846 M Mintchev 

We shall describe in detail only the boson (symmetric) quantisation. The case of 
fermion (antisymmetric) quantisation can be considered analogously. The n -particle 
space of the boson Fock space can be defined by 

2:) = S&"' 

where S ,  are the symmetrisation operators: 

1 
n ! ( T E ~ .  

s o =  1 s,, = - 1 U 

(P,, is the permutation group of n elements). 
is given by 

a3 

5FS(X(l') = 0 2:). 
n =O 

( n  ' 0) (3.7) 

Then the symmetric Fock space 5Fs (X"') 

On Er' and 2&+') respectively, we introduce the creation and annihilation 
operators a'(cp) and a-(cp) as follows: 

(3.9a) 

(3.9b) 

The result of proposition 5(a) and the fact that S,  are orthogonal projections imply the 
estimates 

/la+(cp)4I/ s ( n  + ~ ~ 1 ' 2 1 1 c p l l ~ l ~ l l ~ l l  v* E 2:) ( 3 . 1 0 ~ )  

lla-(cp)4ll s ( n  + ~~1'zllcpll~l~l1411 v* E XS"+l) (3.10b) 

which are the same as in the positive metric case (Reed and Simon 1975). 
It is easy to see that the symmetrisation operators S,, defined by (3.7), are not only 

self-adjoint but also ( , )-self-adjoint. Combining this with proposition 5(b) we 
obtain that a'(cp) is the ( .  , . )-adjoint of a-(cp). 

Let Fo c 5Fs(Yt'(1)) be the finite particle subspace, i.e. cp = (cp") ,  . . . , cp ' " ) ,  , . . ) (where 
p(") E 295"') belongs to Fo iff there exists a number n, such that V n  > n,, p'") = 0. 
Clearly Fo = ~ F ~ ( X ( " ) .  

The operators a*(cp) can be extended by linearity to Fo. Then the quantised field 
@(p) is defined on Fo by 

The real linear map? 

t We remark that (3.12) is not a complex linear map, because cp-a-(cp) is antilinear. 
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will be called quantisation over X'" with respect to ( , )(lj. The operator @(cp) is 
( . , . )-symmetric on Fo, but in general not symmetric. Nevertheless, as we shall show in 
the next section the field Q, possesses a dense set of analytic vectors and preserves the 
main properties known for the standard positive metric Fock quantisation. 

The conclusion from the above considerations is that for each (complex separable) 
Hilbert space X'", there is in general an infinite family of quantised fields, which are in 
one-to-one correspondence with the elements of i( X")). Obviously the well-known 
Segal field @.,(cp), which is obtained by quantisation over 2") with respect to ( , ) ( I ) ,  is 
an element of this family because ( , )(1) E i (X ( ' ) ) .  

4. The main theorems 

Let us fix ( , 
the quantisation cp H@'((P) over with respect to ( , )(I). 

Theorem 1. (a) The operator @(cp) is closable Vcp E X"); 

E i ( X ( ' ) ) .  The following theorems give the fundamental properties of 

(b) Fo is a set of analytic vectors for @(cp); 

(c) If {qk} c x") and s-lim q k  = cp, then 
k + x  

(d) The vacuum vector R = { 1 , 0 , .  . . , 0, . , . } c F o  is cyclic, i.e. the set 

(e) For each x E Fo and cp, 9 E X'" 
{ ~ ( c p l ) .  . . @(cp,)Rlcpi E x"), i = I , .  . . , n ;  n = 1 , 2 , .  , .I is total in $.,(X(')); 

@(cp)@($)x -@($)Q,(cp)x = i Im (40, $ ) ( l , X .  (4.2) 

Remark. In the positive metric case from (b) and the fact that @(cp) is symmetric, by 
Nelson's analytic vector theorem it follows.that @(q) is essentially self-adjoint. 

Proof. (a) The statement follows from proposition 2, because as mentioned before, 
@(cp) is ( * , )-symmetric on Fo, which is dense in 9. , (X")) ,  and ( * , . ) is non-degenerate 
(see proposition 4). 

(b) We have to show that V$ E Fo, 

for some t > 0, which can be done in the same way as in the positive metric case (Reed 
and Simon 1975) using the estimates (3.10). 

(c) Clearly it is sufficient to prove equation (4.1) for $ E XF'. From equations (3.10) 
using that cp H@((P) is a real linear map we obtain 

ll@(Pk)$ -@(q)$Il = 11@((Pk -q)$ll .S [2(n -k 1)11'2k'k - ( P ~ ~ ~ l j ~ ~ $ ~ ~  

so s-limk-,oo @ ( c p d $  = @(cp)$. 

( * , - ) is non-degenerate. 
(d) The proof goes as in the positive metric case and uses essentially the fact that 
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(e) Let x E V'"'. Using equations (3.5) and (3.9) one easily obtains 

@(cp)@(4)x -@(4)@(cp)x = i Im (cp,  4)'lIX. (4.4) 

The extension of (4.4) by continuity on %'?' and linearity on Fo gives (4.2). 

Corollary. The operator W(cp) = ei@p(q), cp E E''), is well defined on Fo as the strong limit 
of the corresponding series, i.e. V$ E Fo 

In contrast with the positive metric case (where W(p)  is a unitary operator) the 
above-defined operator is in general not even bounded and one has to be careful with 
questions concerning its domain of definition. 

Theorem 2. (a) W(cp) is closable V p  E %'"); 
(b) For each cp, E %'('I, x E FO 

W(cp + 4)x = exp (; Im(cp, 4 h )  Wcp) W4)X (4.6) 

where is the closure of W ;  
(c) For each cp E %"", W(cp) is a ( - , )-unitary operator on Fo. 

Remark. Equation (4.6) is known as the Weyl form of the commutation relations. As 
in the positive metric case, equation (4.2) by itself does not imply (4.6). 

Proof. (a) Let {&}c Fo, s-limn+m 4, = 0 and s-limn+m W(cp)d/,,,, = 4. For any x E FO 
one has: 

Using that Fo = Fs(%(l)) and that the inner product ( . , ) is non-degenerate we obtain 
4 = 0, which proves the statement. 

(b) First of all we shall show that Vcp, 4 E R"), the series 

(4.7) 

converges absolutely on Fo. Indeed, VX E %?), equations (3.10) irnply the estimate 

/I@(cpy@(*)'*jl sz 21(k+Q ( n  + 1)1/2 . . ' ( n  + k + ~~1~211cpll~llll~~ll~l~llxll. 
Therefore 

k = O  i = O  - k ! l !  
O3 lI@(P)k@(4)'d t k t !  

m m  ( n  + l)"* . . . ( n  + k +1)lj2 
k ! l !  IIP ll~l~ll4ll~l~llxll ~- 4 (JZt)k" 

k = O  1=0 
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(4.8) 

because 

Now the absolute convergence of (4.7) on FO follows from the convergence of (4.8), 
because the vectors of Fo are finite linear combinations of vectors from Z?) with 
arbitrary n. 

As a second step one proves that V x  E Fo, W(+)x E 9w(,+,). Because of equation 
(4.5) 

s-lim xL = W(+)x (4.9) 
L+m 

where 

and therefore 

The limit 

(4.10) 

which exists as a consequence of the absolute convergence of (4.7), is independent of 
the order in which one takes the two limits and is equal to (4.7). Equation (4.9), 
combined with the existence of the limit (4.10) and the fact that W is closable, imply 
V x  E Fo, V t  E 4%’ 

(4.12) 
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because ,y is an analytic vector for @(cp + 4). Finally, using equation (4.2), equation 
(4.6) follows from the term-by-term comparison of the convergent power series (4.1 1) 
and (4.12). 

(c) Using that @ is ( * , 9 )-symmetric on Fo and the result of point (b) above, we 
obtain V$, ,y E Fo, Vcp E X") 

= ( $ 9  ~ ( - c p ) W ( q o ) x )  = (4, x) 
Finally we shall discuss the realisation of symmetries in the above scheme. Let U be 

( 4 . 1 3 ~ )  

(4.13b) 

The operator r ( U ) ,  defined on L(S,QE') ( L ( S f 1 9 g ' )  means the set of finite linear 
combinations of elements of Sf19g) and S,  is given by equation (3.7)) by U ( n  > 
0) and on X") as the identity, can be continued by linearity to the whole 

a ( 1 , )(l,-unitary operator in X(') and let 

c&y = {cplO.. .O cpnjcp, E Bu, i = 1 , .  . . , n }  

%E) = {pl@. . . ~ c p ~ / c p ~  E i = I ,  . . . , n}.  

F:={cp=(cp ( 0 )  , . . .  , (p("), . . . ) E Fo19'k 'E L(skBg')}  

as a ( , )-unitary operator. Analogously we can define on 
( 0 )  ( n )  , . . . , cp FL = { c p  = (cp  , . . . ) E Fo\cp 'k 'E L(sk%g))}  

the operator r( U-')?. 

Proposition 6. Let U be a ( , )(l)-unitary operator in 5""). Then Vqo E Bu, V$ EFL 

~ ( u ) @ ( d w - l ) $  = @wd$ (4.14) 

where 0 is the field obtained by quantisation over X'" with respect to ( * , 9 ) ( I ) .  

Proof, It is sufficient to prove equation (4.14) for $ E S , % ~ ) .  For the annihilation 
operator one has 

rw)a -(m U-')$ 
= r(u)a-(cp)r(u-')s,$, 0.. .O $fl 

,- 

?- In the case when U and U-.' are bounded, r( U )  and r( U-' )  are well defined by continuity on 2':' and 
therefore on Fo. 
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,- 

= a -( &)I).  

For the creation operator the proof goes in the same way. 

5. Some examples 

In order to apply the general scheme from the previous sections for the reconstruction 
of free fields from their two-point functions, one has to do one preliminary step. The 
point is that knowing the two-point vacuum expectation value w(xl, xz) which is a 
generalised function over a certain set of test functions .Y (F = Y ( R " )  for Wightman 
fields), we have to find a triple? {F, %('I, q}, where F is a continuous map 

F : .Y+ X") ( 5 . 1 ~ )  

such that Vf, g E .F 

I I f(xdw(x1, xz)g(xd dxl dxz = Wf), rlF(g))(l) ( 5 . l b )  

and q is the metric operator. Then we can use the general construction for quantisation 
over %(li with respect to ( , - )(I)  = (r l  * , . )(1i. 

Now let us explain the above reconstruction procedure on the example of the 
harmonic fields q5h* with two-point Wightman functions 

xl, xZ E M 4 $ .  2 w*(x1, xz) = f(x1 -xz) 

We start with the space C6 with scalar product§ 
3 

& = O  
( 2 ,  U)(1 )  = 2 .f&U& + l 4u4+  Z5us (5.2) 

6 where z = (zo,  . . . , 2 3 ,  24, z 5 ) ,  U = (uo, . . ., u3, u4, u5) E C . In terms of (5.2),  two non- 
degenerate indefinite inner products are defined by 

(2, u h *  = ( 2 ,  r l * U ) ( l )  (5.3) 
where q k  are 6 x 6 matrices with the following block matrix form 

0 1  0 

Obviouslyq: = 16 (1, being the 6 X 6 unit matrix) and therefore 

I(Z9 u h * I  l l ~ l l ~ l ~ l l ~ l l ~ l ~ .  

(5.4) 

+ From the generalisation of the reconstruction theorem to indefinite metric (Yngvason 1977) it is known that 
the Hilbert structure {F, %'('), q }  is not uniquely determined by w ( x ~ ,  x 2 ) .  

$ Because of the fact that the metric is indefinite, two signs for the two-point function are possible. 
0 Obviously this scalar product generates the standard topology on C6. 
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Let @* be the fields obtained by quantisation over C6 with respect to (5.3). Then the 
Wightman fields 41ti, for which we are looking, are defined on 9(R4) by 

4 h * ( f )  = @ * / J i z f  f E 94“(R4) ( 5 . 5 )  

where 

zi = (JJ(O), ”, f(0)) E C6,  

f ( p )  is the Fourier transform of f(x) given by 

(5 .6)  

which shows that the map F (see equation ( 5 . 1 ~ ) )  is given by 

F(f) = ti f E Y(R4). 

All the other Wightman functions can be written in a standard way in terms of the 
two-point functions (5.8). 

The constructed fields obey the commutation relations 

[4h*(Xl), 4h*(X2)1= 0 Vx1, x2 E M41. (5 .9)  

Let us consider the representation U(a,  A) of the Poincark group 8 = R 4 .  O(3, 1). 
Its form is suggested by equation (5 .6)  and the transformation law 

f(p)-eipaf(A-’p). 

In general, the representation U(a,  A) is defined on X‘” = C6 by 

U ( a ,  A)z = ( Z , A - ~ ” , ~  +ia,zs, ~ ~ - a ~ z ~ + 2 i z . A - ~ ~ , a ~ ,  ZS) (5.10) 

(5.11) 

The operators U(a,  A) are not unitary, but are bounded (%‘(l) is finite dimensional) and 
therefore the operators r( U(a,  A)) and r( U(a,  A)-’) are well defined on Fo, and 

r ( U ( 4  A))4h*(f(x))r(U(a, A)-’) = 4h*(f(A-’(x -a ) ) ) .  (5.12) 

It is important to stress that 2“’ contains the following subspace V(l)= 
( z  E X(’)Iz, = zs = 0) of vectors fixed with respect to (U(a ,  l))asR1. It gives rise to an 
infinite dimensional subspace V c  gs (X‘ ’ ) )  of vectors fixed with respect to 

? Because of this commutation property, all time-ordered Green functions, including one type of field 
(&+ or &-), coincide with the corresponding Wightman functions. 
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{r (U(a ,  l))}aGiW1. Therefore, besides the mathematical vacuum 0, there is an infinite 
dimensional space of translation invariant states, called physical vacuums. 

We remark also that the n-particle space Xpcn)  of the above described field is finite 
dimensional (more precisely 6n-dimensional) which simplifies the construction. 

Considering the quantisation of the dipole field, we choose a slightly different 
formulation from the existent explicit Fock realisations (Ferrari 1974, Zwanziger 
1978). Some of the details of our derivation are important for the better understanding 
of this quantisation problem. In order to define the one-particle space, let us consider 
the direct sum 

L2( v,, 8) 0 L2( v+, 8) /PI = ( 2 
i -1  

(5.13) 

where V+ is the future light cone V + = ( ~ E M ~ / ~ * = O , P O = = O }  and d3p/lpl is the 
Lorentz-invariant measure on it. The elements of the above space will be denoted by 

Besides the standard scalar product 

(5.14) 

where the asterisk means Hermitian conjugation, we introduce also the scalar product 

where N is the 2 x 2 matrix 

1 3 -1 
" = d 1  21. 

It is easily seen that 

1 2 51/4 IlPIILZOL2 IIPII 6 51/4IlPIIL'@LZ 

so that ( . , ) generates the same complete topology as ( .  
two indefinite inner products are defined by 

(P, +)* = (P, T * $ )  

with metric operators vi given by 

(5.15) 

(5.16) 

) L 2 0 L z .  In terms of (5.15), 

(5.17) 

(5.18) 

Obviously 77; =I, where U is the unit operator in L 2 0 L 2 .  
Let @* be the fields obtained by quantisation over L2 0 L2 with respect to the inner 

products (5.17). Then the dipole ghost fields are defined on yb(R4)= 
{ f ( x )  E Y(R4)lJf(x) d4x = 0) by 

(5.19) 
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where 

M Min tc hev 

(5.20) 

In the last formula n is an arbitrary but fixed time-like vector (n2>0) ,  na= nFd/apF 
andfis the Fourier transform (5.7). It can be verified that c p i ( p )  is indeed an element of 
L 2 0 L 2 .  By direct computation for the two-point functions one has 

( 4 d d f ) a  4 d * k ) W *  

(5.21) 

where 

( 5 . 2 2 ~ )  

which has to be regarded as a functional on sP0(R4). Its continuation on 9(R4) is given by 

(5.22b) 

1 2 w (XI, x2) = -2 In [ - (x1 - x2) + ie (x? - x: )I 
(477) 

1 l2 
(4.n)21n -(x1-x2)2+ie(x? - x : )  

where 1 is an arbitrary positive length. 

The map F (see equation ( 5 . 1 ~ ) )  now is given by 

1 
F ( f )  = (PF f G  yO([w4). 

IT 

The dipole field is local, since 

[4d*(XI), 4 d * ( X Z ) 1 =  *:[w(x1, x2) - w(x2, x d l  

(5 .23)  = * - - e ( x ?  i -x;)e((xl-x2)  2 ) = * i ~ ( x ~ - x ~ )  
8.n 

where the function E ( x )  defined by the last equation has the properties 

= E ( x ) l  = O  
X O = O  x O = O  

(5.24) 
a 

i For n = ( 1 , O )  one obtains the definition of S(po)S ' (p2 ) ,  given by Vladimirov (1966, p294). 
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It can be easily verified that the canonical commutation relations (CCR) following in 

3, = T(a&*da*x + i X X )  (5.25) 

the standard way from the Lagrangians 

are coexistent with (5.23). Indeed, using the Lagrange-Euler equations 

e 6 - d  = x  
ux=o 

as well as the properties of the function E ( x )  and equation (5.23), we obtain 

(5.26) 

which are exactly the CCR, corresponding to the Lagrangians (5.25). 
We stress that, although the vacuum Q is cyclic with respect to (see theorem 

l(d)), this is not true for the field q5d*, because of the special form of the vectors pigiven 
by (5.20). In order to obtain cyclicity of the vacuum for cPd*, we define the dipole 
one-particle space by 

RY = {Pf(P)/fE %(R"} (5.27) 

The ( . , - ),-unitary representation U(a,  A) of the PoincarC group 9' is given on the 
where the bar means the closure in L2 0 L2. 

dense (in RL')) set of vectors of the type cpf by 

U(a ,  Ncpi = rp? (5.28) 

where f ' ( p )  = e'PQf(A-'p). The above representation is not unitary. For example, for 
the translations one has 

(U(a ,  1)cph U(a,  l h )  

+i (an) i (p)n  JF(P)I (5.29) 

where an = awn,gF". 
We note finally that in order to give a probability interpretation for the models in 

which the fields described above enter, in analogy with quantum electrodynamics, we 
have to fix in the total Hilbert space of the model a subspace P, on which ( * , ) is 
positive semi-definite and such that 

c l€% 

U ( a ,  h)R'c 2%" V ( a ,  A) E P" 

For the general axioms of a quantum field theory with indefinite metric we refer the 
reader to the paper of Strocchi (1977). We shall discuss in the next section the choice of 
X' in the particular case of the pure gauge model and shall see that the dipole and 
harmonic fields realise the interaction, but do not give rise to physical asymptotic states. 
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The last property seems to be a general feature of the O2 type interaction and can be 
used as confinement mechanism in the quark-gluon system (see d’Emilio and Mintchev 
1979). 

6. The four-dimensional pure gauge model 

Let us consider the Lagrangian of Zwanziger (1978). 

where the fields are varied independently and the symbol - means Dirac conjugation. 
The equations of motion are 

a,a = A,  3,A” =; B 

I, = g h , @  -d,B d,I” = 0 (6.2) 

y”(i d, +gA,)Q -m+ = 0. 

Because of the conservation of the spinor current g$y,rl/, the above system implies 

yW(i a, + g  d&)$--m4 = 0 ( 6 . 3 ~ )  

D2(b = 0. (6.3b) 

The solution of (6.3) can be expressed in terms of the free spinor field +o with mass m, 
defined on the Hilbert space Xdo, and the field 4 in the following way 

Q = Go:einC:. (6.4) 

The normal exponent in the right-hand side of (6.4) is defined by the series 

where : & k :  denotes the kth normal product of the field 4 (Wightman and GArding 
1964). The vacuum expectation value of arbitrary finite number of such exponents is 
well defined (Wightman 1967), which allows us to compute the Wightman functions of 
rl/ and $. The general solution of equation (6.36) can be written as a real linear 
combination of the fields: 

(a) 4 = 409 the free massless scalar field (O& = 0) (Kleiber 1965); 
(b) 4 = I $ d i ,  the dipole fields (the case C$d+ is studied by Zwanziger (1978); 
(c) q5 = q5h*, the harmonic fields, defined in 9: 4. 
Let us consider the !ast two cases. When q5 = #d* ,  the 2n-point Wightman functions 

of the fields Q and $ have the form 

W * ( X I , .  . . 7 xn, X n i l , .  . I , x 2 n )  

=_-(a, $(XI) 9 B . d l ( X n ) J ( X n q )  . . . ! i ( x 2 n ) f 1 )  

= ( 1 2 ) * r z ( g / 4 ~ ) ~  mo, Q ” ( X 1 )  . $o(xn)l to(xr ,+l)~ * .  GO(X2n)Q/,J 

where %?@” is the vacuum state of the free spinor field, 1 is the parameter 
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introduced in equation (5.226) and 
x. .  = x. -x ,  

I f  I J 

AG=-(xi-xi)2+iE(xP-xp). 

( 6 . 7 ~ )  

(6.7b) 

There are two types of transformations which imply independently gauge trans- 
formations of the first kind for the field +. These are the gauge transformation of the 
first kind for the field +bo 

$0 ++ 40 elga J o  c-, J0 CY E R 1  

q5-4+a CY ER1. 

and the scalar gauge transformation of the field q5 

The functions (6.6) are invariant under all of these transformations. In the massless 
case (m  = 0) they are also conformal-invariant and the fields +, 4 have anomalous 
dimension 

The physical subspaces XL* c 5YGo@9s(X$1') (XY' is given by equation (5.27)) are 
defined by the Gupta-Rleuler-type conditions 

* E  XL* @ 04;* ( p ) W  = 0 vcp E X$? 

It can be shown (Zwanziger 1978) that the factor spaces Xtdi/X$*, where Xz*= 
{q E XL : {*, q) = 0}, are isomorphic to XGo. 

It is important to stress that the Wightman functions w+ and w- in the case m > 0 
obey the cluster property Vg E R', in other words for any spacelike vector a E M4 and 
for any A, g ER' ,  

l imw(xl, .  . . ,xj,x,+1+Aa,. . . , ~ 2 ~ + A a ) - w ( x l , .  . . ,xf)w(x,+l, .  . . ,xzn)=O. 

This is not true for w- when m = 0. Indeed, for example 

(6.8) 
*-cc 

and for sufficiently large g the cluster property is violated. 
In the case (c), for the vacuum expectation values of the fields +, 4 one has 

wdx1, * .  . , xn, Xnclr.. . , X 2 n )  

= ( a b o ,  +O(Xl)  - * +o~x")Jo~x"+l) * . JO(X2") .nG0) 

xexp[Fg2( c x i +  c x i - f  1 = 1  i = n + l  F xt)]. (6.9) 

The above functions obey the axiom of positive definiteness and therefore one can 
define the physical subspaces by 

l S l < J S n  n + l s l < f s 2 n  

7- 

EL* = {W+, +)W 
where 9 is an arbitrary polynomial and the bar means the closure in X@o 8 Ps (C6). 
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The functions (6.9) violate the cluster property in both cases m = 0 and m > 0. 
Indeed, let us consider for example the two-point function W - ( X I ,  x2) with xz = x1 + Aa, 
a 2  = - 1. Because of translation invariance one has 

w-(xl ,  AU +xl) = w ~ ~ ( A u )  e'*** 

where wG,, is the two-point function of the free spinor field with mass m. For large A the 
behaviour of wGo(Aa) is determined from the behaviour of the Hankel function Kl(mh). 
Using the asymptotic formula 8.451(6) from Gradshteyn and Ryzhik (1965) we obtain 

which is in contradiction with equation (6.8). It is interesting to remark that if we are 
separating simultaneously equal numbers of $ and 4 in equation (6.9), i.e. if we are 
separating combinations with zero total charge, the limit A + 00 exists. The reason is 
that in this case the exponent in the right-hand side of equation (6.9) is independent of 
ha. The confinement mechanism becomes more transparent in the momentum space. 
Indeed, let us consider the two-point Green functions 

~ & 1 ,  x.2) = (a&o, W ~ ( X ~ ) ~ ( X ~ ) . I Z + ~ )  exp[*g2(xl - x21'1 

where 

(6.10) 

Taking the Fourier transform of (6.10) we obtain 

$", ( p )  = eip* S f n )  (5) d45 

From the last equation it follows that $ f n ) ( p )  has a pole of order 2n + 1 for p 2  = m 2 ,  
which implies that t&) has an essential singularity at this point. Therefore, in the sense 
of Lehman-Symanzik-Zimmerman, there are not asymptotic spinor states with mass 
m. 

We shall not speculate further about this sort of confinement mechanism in the 
trivial gauge coupling, realised by the harmonic fields q5h*, but we stress that the 
representation of the translations in the above model is not unitary on the light cone, 
which is a necessary condition for confinement in the approach of Strocchi (1978). 
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